当前位置: 首页 > news >正文

如果各位同学还对时间复杂度有疑问?看这一篇就可以啦!

🎇🎇🎇作者:
@小鱼不会骑车
🎆🎆🎆专栏:
《java练级之旅》
🎓🎓🎓个人简介:
一名专科大一在读的小比特,努力学习编程是我唯一的出路😎😎😎
在这里插入图片描述

今天小鱼讲到的是关于时间复杂度空间复杂度的理解。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

了解时间复杂度

  • 时间复杂度
    • 前言
    • 时间复杂的讲解
    • 如何简化时间复杂度
    • 时间复杂度的计算

时间复杂度

前言

我们来举个例子!
假如我们有A,B两台电脑,A电脑的执行速度是1000次/s,B电脑的执行速度是1次/s,假如两台电脑都执行相同的代码,那么是不是我的A电脑会更快的完成任务。

答案是:对的!

但是我们改变一下条件,假设两台电脑需要完成一个查找数组中指定元素的任务,A电脑中的代码每次可以遍历1个元素,B电脑中的代码每次可以遍历100个元素。那么大家认为这两台电脑哪一个会更快的完成任务?
在这里插入图片描述

通过这个图表我们就可以看出,当运行到10秒时,我们的B对元素遍历的次数已经和A持平了,再往后面我们的B的遍历次数更是远超A.

于是我们可以通过上图的对比看出,哪怕是电脑的性能很好很优良,但是却还依然跑不过B,这就体现到了代码运行效率的重要性!

时间复杂的讲解

上面举得例子只是为了让大家知道代码运行效率的重要性,下面才是真正的讲解如何计算代码的运行效率!

大家看这段代码!

   public static void main(String[] args) {
        int n=100;
        while ((n)!=0) {
            n--;
        }
    }

大家认为这段代码会运行多久?

可能就会有同学回答说:这个要放计算机上跑跑才知道吧…

那我如果将n改为10000呢?需要运行多久啊?

同学:这个…要不再测试一次?

其实呀,我们并不能精准的测量出程序运行的时间,有的计算机的运行速度会快一些,有的则会慢一些…于是呢,就有人提出了用计算机的语句的执行次数来当作计算机的时间效率,而不是运行的时间。

我们来算算上述的代码执行了多少次

为了方便讨论,这里我们把每一条语句的执行时间都看做是一样的,记为一个时间单元

在这里插入图片描述
由于黄色的最后还需要判断一次,所以需要n+1个时间单元 !

那么我们就可以计算出这个程序的语句执行了多少次,我们可以用函数来表达:y=n+n+1+1,化简就是:y=2n+2;函数图像就是

在这里插入图片描述

所以,如果要预测程序运行的时间我们可以把运行时间函数求出来。

可是如果光看这个函数还是有些复杂啊!

其实呀,我们平时都会对这些函数进行简化的,使得它既简单又没有失去函数得主要特性。

咦?那怎么简化啊?

如何简化时间复杂度

对于时间复杂度来说,我们比较关心的就是影响最终结果的最高次项。

在这里插入图片描述
比如说:T(n)=2n+2, 当n非常大的时候常数2和n的系数2对函数结果的影响就很小了
例如:

T(n)=n+1 忽略常数项 T(n)~n

T(n)=n+n^2 忽略低阶项 T(n)~n^2

T(n)=3n 忽略最高阶的系数 T(n)~n

所谓低阶项就是当n很大时,该项对于这个数的影响很小,比如n相对于n^2来说,n就是低阶项!

对此呢,我们有一个比较的关系,不同项进行比较只保留最高阶项,比较关系如下

在这里插入图片描述

化简后的函数可以代表原函数的总体趋势,并且简化后的式子就可以称为这个算法的时间复杂度,记作O(f(n)),其中f(n)是简化后的式子,例如刚才的T(n)=2*n+2,简化后为T(n)~ f(n) ~ n,所以我们也可以记作O(n).

更准确地说O代表了运行时间函数的一个渐进上界,即T(n)在数量级上小于等于f(n)

那我们如何计算时间复杂度呢?

时间复杂度的计算

经过了前面的两个小部分的讲解,我们也可以总结出:计算算法复杂度大O的方法

一.得出运行时间的函数
二.对该函数进行简化

1.用常数1取代运行时间中所有加法常数
2.修改后的函数只保留最高阶项
3.如果最高阶项存在,并且不是1,则忽略这个最高项数的系数

举个例子,看下面代码:
在这里插入图片描述

我们可以看出,T(n)=5,我们可以对这个函数进行简化,将他的常数项用1来取代,又因为该函数没有最高阶项,所以他的时间复杂度就是O(1)

O(1)也被称为常数阶

当然啦,如果我们一个一个去数语句再去计算函数是很麻烦的,有没有简便一些的方法吗?

其实是可以偷偷懒的,一般来说程序最内层执行次数最多的语句就决定了整个函数的趋势。

在这里插入图片描述

我们只需要找到最内层语句执行次数的规律就行!所以我们就可以清楚的得出上面的时间复杂度是O(n).

并且呢,我们也可以根据这个方法得出下面这个代码的时间复杂度O(n^2)
.在这里插入图片描述

如果还有人不太理解这个O(n^2)这个时间复杂度的意思,我给大家用数学的角度来算一下!
在这里插入图片描述

在这里插入图片描述

所以我们可以理解为上述的代码的时间复杂度为O(n^2)

下面再来介绍最后一个比较牛 * 的时间复杂度O(log2N),读作log以2为底N的对数。
怎么个牛 * 法呢?二分查找大家都知道吧,在一个有序数组里查找指定的元素,如果我们用从前往后遍历的方式来查找,我们用这个世界的人口举例
在这里插入图片描述
我们简单认为是76亿人,所以我们假设这个数组是76亿个元素,如果我们想从这76亿个元素中查找到一个指定的元素,那么最坏的情况就是查找76亿次,多么庞大的次数啊。
但是!假设这是一个有序数组,该数组有76亿个元素,大家猜猜我们需要查找多少次?
答案是我们只需要查找33次,就可以找到这个要被查找的元素,牛不牛!在这里插入图片描述
我们再来看看O(logN)的函数图像

在这里插入图片描述
上下图对比,它随着自变量的增大,因变量增长的很慢很慢!

	int a=1;
    while (a<=n) {
       a*=2;
   }

这段代码的复杂度就是对数级别的,O(logn)
怎么计算它的时间复杂度呢?

在这里插入图片描述

复杂度的内容好多,会一直伴随着我们学习数据结构与算法,所以我们现在只需呀简单理解复杂的的含义就行!


在这里插入图片描述

相关文章:

  • Node.js 入门教程 6 V8 JavaScript 引擎
  • lombok详解
  • Keras深度学习实战(38)——图像字幕生成
  • 含电热联合系统的微电网运行优化附Matlab代码
  • SecXOps 核心技术能力划分
  • PyTorch学习笔记-TensorBoard
  • 牛顿法与拟牛顿法摘记
  • Collectors.collectingAndThen()
  • verilog练习——组合逻辑
  • 【Python+百度API】实现人脸识别和颜值检测系统(包括人脸数量、年龄、颜值评分、性别、种族、表情检测)(超详细 附源码)
  • Python:每日一题之顺子日期
  • 简单的Hystrix熔断
  • 036-JList列表控件使用案例讲解
  • 【网页设计】期末大作业html+css+js(在线鲜花盆栽网站)
  • Python用PyMC3实现贝叶斯线性回归模型
  • 智能驾驶 车牌检测和识别(一)《CCPD车牌数据集》
  • 【c语言进阶】动态内存管理知识大全(下)
  • 前端实现水印的两种方式(DOM和Canvas)
  • Linux——进程
  • 【看表情包学Linux】冯诺依曼架构 | 理解操作系统 | 基于 Pintos 实现新的用户级程序的系统调用
  • 单链表——简单的增删查改
  • 电子技术——MOS放大器基础
  • 嵌入式 学习
  • 【Linux】vim编辑器的使用
  • 强化学习笔记:基于策略的学习之策略迭代(python实现)
  • 为什么记笔记的人更有可能成功?
  • 回顾生产者/消费者问题下产生的java多线程(二)
  • 如何用Idea或者webstorm跑一个Vue项目
  • 为什么后面加了个eq(0).mouseover(),该怎么解决
  • 大话设计模式第三、四、五章--一些设计原则
  • 设置VSS2005使支持通过Internet访问
  • flutter工程目录简介
  • jQuery.hover() 函数详解
  • Oracle 笔记之视图
  • 【C++】 关键字 mutable